BSE 11042 Principles of Irrigation

Professor M.M.M. Najim

Vice Chancellor South Eastern University of Sri Lanka

TOTAL HOURS	Theory	25
	Practical	10
EVALUATION AND MARKS	Continuous	30%
	Assessment	
	End Semester	70%

LEARNING OUTCOMES

- On completion of the course, students should be able to;
- Explain the soil moisture constants and water requirements by crops.
- Decide on frequency of irrigation, efficiency of irrigation
- Carryout irrigation scheduling for different crops
- Explain the importance of land grading on irrigation
- Describe different types of water application systems

- Soil Moisture constants (1. BSE 11042 Irrigation Practices).
- Water requirement of crops and factors affecting it (1. BSE 11042 Irrigation Practices).
- Intensity and Frequency of Irrigation (1. BSE 11042 Irrigation Practices).
- Irrigation Efficiencies (1. BSE 11042 Irrigation Practices)...
- Approaches of irrigation scheduling (2. Irrigation Scheduling).

- Systems and methods of irrigation (3. Surface Irrigation, 4. Furrow Irrigation, 5. Sub Surface Irrigation, 6. Sprinkler irrigation, 7. Drip Irrigation.)
- Effective rainfall,
- Leaching requirement,

- Quantity and quality of irrigation water.
- Measurement of irrigation water.
- Elementary idea of drainage on farms.
- Land Grading and Drainage for Irrigation.
- On farm conveyance.
- Gravity application Methods.
- Pressurized application systems.

- Pumping techniques, automatics of pumping stations, subsurface irrigation network.
- Visit to irrigation and drainage projects.

• Answers needed during irrigation

– How much to irrigate?

– When to irrigate?

– How to irrigate?

How much to irrigate?

Soil Water

Water Content - Mass Basis

$$\theta_{m} = \frac{mass water}{mass dry soil} = \frac{M_{w}}{M_{s}} = Mass of water / Mass of oven dried soil Dry soil sample in an oven$$

Volumetric Water Content

$$\theta_{v} = \frac{volume \, water}{bulk \, volum \, soil} = Volume \, of \, Water \, / \, Volume \, of \, Bulk \, Soil$$

Volumetric Water Content = Water content – Mass Basis X (Soil bulk density / water density) **Volumetric Water Content – express as** a height i.e. 0.28 or 28% means there is 0.28 m (28 cm) of water in 1 m depth of soil

Capillary Water – Rapid Drainage

> Management Allowed Deficit

Capillary water – slow drainage

Capillary water – very slow drainage

Hygroscopic Water – No Drainage

Total available water for plant

(Field Capacity_v – Permanent Wilting Point_v) X Root Depth

or

(Field Capacity_m – Permanent Wilting Point_v) x (Soil bulk density / water density) x Root Depth

- But, we cant allow for plants to absorb all this water. Why?
 - When water in soil decreases
 - Absorption become difficult
 - Water stress
 - Reduces yield
 - Stress during critical stages yield reduces considerably. i.e. Onion – bulb formation stage, some grains – flower initiation to flowering

Solution:

- When a part of Total Available Water (TAW) decreases irrigate and provide the lost content
- What % of TAW is allowed to decrease (deficit %)
- This Stage is Management Allowed Deficit
- Net Irrigation Water Requirement =

 (Field Capacity_v Permanent Wilting Point_v) × Root Depth x Deficit %

Deficit % Examples

- Corn Development Stage 50%
- Potato Yam formation Stage 50%
- -Grapes 65%
- **Beans 40%**
- -Fruit trees 50 65%

- Is it enough to supply the Net Irrigation Water Requirement? No –
- Due to water losses during irrigation
 - Seepage and Percolation (In Field and along conveyance canals)
 - Evaporation (field evaporation is included in crop evapotranspiration)
 - From Canals
 - Field Runoff
 - When these losses are considered we have to irrigate more than the net irrigation requirement

Total (Gross) irrigation water requirement = = [(Field Capacity_v –Permanent Wilting Point_v) × Root Depth x Deficit %] / Water Application Efficiency (E_a)

or

[(Field Capacity_m – Permanent Wilting Point_m) x
(Soil bulk density / water density) x Root Depth x
Deficit %] / Water Application Efficiency (E_a)

• Crop Water Requirement

- Evapotranspiration
 - Cannot measure easily
 - Calculate/estimate (using weather data)
 - Easiest Method Using pan evaporation data

Crop water requirement (ETc) = ETo * Kc ETo – Reference crop evapotranspiration (Imaginary/hypothetocal grass cover) Kc – Crop Coefficient (Under standard conditions)

Need to adjust the Crop Coefficient for field conditions $ETc_{adj} = ETo * Kc_{adj}$

• Single and dual crop coefficieint approach

• Dual Crop Coefficient Approach

Soil evaporation Crop Transpiration

Need to calculate ETc for each growth stage

In the designing of irrigation systems, maximum water requirement has to be considered

 $ET_o = E_P * K_P$ $E_P - Pan$ Evaporation $K_P - Pan$ Coefficient

or

When we have weather data, models like Penman, Penman-Monteith can be used to estimate ET_o

FAO recommends Penman-Monteith

Water Loss and Efficiency

- Water application Uniformity:
 - Can measure whether the water is applied uniformly in the field
 - In Surface Irrigation

Infiltrated Depth

Sufficient IrrigationWe cannot expect 100%Uniformity

Uniform and efficient water applictaion

Insufficient (deficit) irrigation

Non-uniform inefficient irrigation

Over irrigation

Non-uniform inefficient irrigation

Non-uniform and inefficient irrigation

- Distribution Uniformity (U_d):
 - Percentage of average application amount received in the least watered quarter $U_d = \left(\frac{L_q}{X_m}\right) 100$
 - L_q –- Depth infiltrated in the lowest quarter (depth caught)
 - X_m Average Depth infiltrated (depth caught) Gives a clue on distribution
 - This index do not give any idea on the amount lost or deficit in irrigation requirement

• Water Distribution Efficiency (Ed) :

 percentage of the average application depth delivered to the least-watered part of the field.

$$Ed = \left(1 - \frac{y}{d}\right)100$$

Y - Average absolute numerical deviation in depth of water stored from average depth stored during the irrigation $\sum |x - \overline{x}| / n$

$$\sum |x_i - \overline{x}| / n$$

d - Average depth of water stored during irrigation

indicates the degree of uniformity

• Water Application Efficiency (Ea)

 $E_a = \frac{Average \ depth \ added \ to \ the \ root \ zone \ storage}{Average \ depth \ applied \ to \ the \ field}$

- Gives a general idea on the function of an irrigation system
 - possible to have a high Ea but have the irrigation water so poorly distributed
 - possible to have nearly 100 % Ea but have crop failure if the soil profile is not filled sufficiently to meet crop water requirements.
 - does not include
 - losses due to seepage
 - demarcation between tail water runoff and deep percolation

Water Conveyance Efficiency (Ec):

$$Ec = \left(\frac{Wf}{Ws}\right) 100$$

- Wf Water delivered to field
- Ws Water diverted from source
• Water Use Efficiency (Eu):

$$Eu = \left(\frac{Wb}{Wf}\right) 100$$

- Wb- Water used beneficially
- Wf Water delivered to field

Other beneficial uses could include salt leaching, crop cooling, pesticide or fertilizer applications, or frost protection.

Surface Irrigation

Depth of water infiltrated into soil profile

Depth of water infiltrated into soil profile

• Water requirement efficiency (E_r):

 $\textbf{E}_{r} = \frac{\text{Volume of water added to root zone storage}}{\text{Potential soil moisture storage volume}}$

• indicator of how well the irrigation meets its objective of refilling the root zone.

• Deep percolation ratio (DPR):

 $\mathbf{DPR} = \frac{\forall \text{olume of deep percolation}}{\forall \text{olume of water applied to the field}}$

• Tailwater ratio (TWR):

TWR = $\frac{\text{Volume of runoff}}{\text{Volume of water applied to the field}}$

When ?

• Irrigation Interval =

Net Irrigation Requirement / Crop Water Requirement

- Crop Water Requirement:
- -Varies according to crop and its growth stage

- Irrigation Schedule
 - Soil Water (mm) qQ ◆ FC ■ PWP ▲ MAD
- Effective Rainfall

• All the calculations related to irrigation can be done using a computer software

CropWat

How?

- Any irrigation system should fulfill the following
 - Supply required amount of water
 - Distribute water uniformly within the root zone
 - Maintain minimum soil erosion and other losses
 - Maximum efficiency during water usage
 - Provide economic benefits

Irrigation methods

- Flood irrigation methods
 - -Basin
 - -Border
 - -Ridge and Furrow
- Sub-surface irrigation
- Sprinkler irrigation
- Drip irrigation

Flood irrigation methods

Basin

Border

Ridge and Furrow

Level and Graded

• Wetting pattern varies with the texture. Accordingly the width and the length has to be decided

Soil A Coarse textured soil

This soil does not provide enough lateral movement for this wetted furrow spacing.

Soil B

Fine textured soil

Lateral movement okay for this wetted furrow spacing and soil.

Opening the canal bund

Sub-Surface Irrigation

Using open ditches or canal to raise the water table to root zone Use of perforated pipe to elevate the groundwater level

Normal Water_ Table Wetting the root zone by perforated pipes

Pitcher Irrigation

up p^;~TWy dYQp~ jl sm|p`qny

Sprinkler Irrigation

High efficeincy -50 - 95%

Sprinkler Irrigation

Drip Irrigation

- High efficiency 75 95%
- Suitable for any soil and slopy land
- Can fertigate
- Minimize weed growth
- Can maintain water at optimum level

- Disadvantages
 - Clogging when hard water is used
 - High capital requirement

pWdn h`nQpRrN @n

pWdn h`nQpRrN dYQp

Thank you

Potential Evapotranspiration

- Evapotranspiration from a uniformly high green short crop that covers the surface completely and without any water shortage is called the potential evapotranspiration or reference evapotranspiration and is denoted as ETo
- Complications
 - Many field crops fit to the definition
 - Which crop to select
 - Evapotranspiration from a short green grass cover is 10
 - -30% more than an agricultural crop

Reference Crop Evapotranspiration

The evapotranspiration rate from a reference surface (a hypothetical grass reference crop with an assumed crop height of 0.12 m, a fixed surface resistance of 70 s m-1 and an albedo of 0.23) not short of water, is called the reference crop evapotranspiration or reference evapotranspiration and is denoted as ETo.

 Albedo – how much solar radiation is reflected from a surface

